Enhanced genetically encoded voltage indicators advance their applications in neuroscience

Connor Beck, Diming Zhang, and Yiyang Gong

Current Opinion in Biomedical Engineering (2019)

[Publisher version]

Abstract:

Genetically encoded voltage indicators report membrane voltage with high spatiotemporal resolution. Extensive recent efforts to improve the GEVIs’ brightness, sensitivity, and kinetics have greatly increased the GEVIs’ signal-to-noise performance over ten-fold and lowered their response time to the sub-millisecond regime. Such capabilities have broadened the GEVIs’ ability to measure membrane voltage of neural populations at cellular resolution in vitro and in vivo, all at high speeds. The GEVIs’ high voltage fidelity and fast response have revealed novel physiological phenomena in multiple neuroscientific applications. Such applications portend future targeted studies of voltage activity that take advantage of the GEVIs’ ability to report rapid dynamics from genetically-targeted neural populations.