Biophysical Journal, Volume 121

Supplemental information

Engineering rhodopsins' activation spectra using a FRET-based approach

Connor Beck and Yiyang Gong

Engineering rhodopsins' activation spectra using a FRET-based approach

Supplemental Information

Connor Beck, Yiyang Gong

Dept. of Biomedical Engineering, Duke University, Durham, NC, 27708, USA

Supplemental Figure 1. Our custom-built monochromator delivered spectrally narrow pulses of light at sufficient excitation power levels.

(a) The average full width at half maximum for pulses centered around wavelengths ranging from 445 nm to 580 nm was 14.4 nm.

(b) Illumination in the 15 nm spectral windows ranging from 455 nm to 580 nm (*color points*, in μ W/mm²) delivered a maximum power density greater than 10 μ W/mm² at the sample. The relative power in each spectral window matched the SOLIS LED illumination spectrum (*solid line*).

Supplemental Figure 2. Modest truncations to ChroME's unstructured C-terminal amino acids do not adversely affect peak photocurrent.

(a) Peak photocurrent in HEK293T cells expressing a bicistronic construct encoding ChroME with C-terminal truncations ranging from 0 to 27 amino acids and mScarlet. Photocurrent was elicited by 100 ms pulses of 490 nm light at excitation powers ranging from 0.05 mW/mm² to 1.6 mW/mm². Error bars represent mean \pm s.e.m.

(b) Peak photocurrent in HEK293T cells expressing a ChroME-mScarlet fusion protein with C-terminal truncations of ChroME ranging from 0 to 21 amino acids. Unlike in the bicistronic construct, truncations greater than 21 amino acids abolished expression of the rhodopsin (* p < 0.05, two-sided Wilcoxon rank-sum test, $n \ge 10$ cells per variant). Error bars represent mean \pm s.e.m.

Supplemental Figure 3. The power densities used to measure ChroMEΔX- variants' activation at 450 nm and 490 nm excitation were below saturation.

(a) Peak photocurrent as a function of excitation power for ChroME Δ X-RSM (*left*), ChroME Δ X-mTFP (*middle*), and ChroME Δ X- Δ 9mTFP (*right*) in response to 100 ms pulses of 450 nm light. (b) Same as in (a) but for 100 ms pulses of 490 nm light. In all panels, the response of untagged, parental ChroME is included for comparison. $n \ge 6$ cells per variant; error bars represent mean \pm s.e.m.

Supplemental Figure 4. ChroMEΔ15-mTFP has higher photocurrent and comparable kinetics to the blue-light-activated rhodopsin CheRiff.

(a) Photocurrent response of ChroME Δ 15-mTFP in response to 100 ms pulses of 450 nm light at 1.5 mW/mm². The average $\tau_{\text{off}} \pm$ standard deviation is labeled on the figure.

(b) Same as in (a) but for CheRiff. Shaded regions represent mean \pm s.d. While ChroME Δ 15-mTFP drove significantly higher photocurrent ($p = 10^{-4}$), the kinetics were statistically comparable (p = 0.9, two-sided Wilcoxon rank-sum test, $n \ge 6$ cells per construct).

Supplemental Figure 5. A fusion of CoChR and Rosmarinus has a smaller activation spectrum enhancement than the enhancement of ChroME-TFP constructs.

(a) Photocurrent response of CoChR Δ X-P2A-mScarlet (*Left*) and CoChR Δ X-RSM (*Right*) in response to 100 ms pulses of 450 nm light at excitation power ranging from 15 to 800 μ W/mm² (*Top*) or identical, 490 nm pulses (*Bottom*). CoChR Δ 21-P2A-mScarlet had significantly lower photocurrent than untagged CoChR at all excitation power (*** $p < 10^{-3}$, two-sided Wilcoxon rank-sum test, $n \ge 8$ cells per construct). Similarly, all CoChR Δ X-RSM at 800 μ W/mm² (* p < 0.05, ** p < 0.01, *** $p < 10^{-3}$, two-sided Wilcoxon rank-sum test, $n \ge 6$ cells per construct). Error bars represent mean ± s.e.m.

(b) *Top:* 450 nm/490 nm photocurrent ratio for CoChR Δ X-P2A-mScarlet (*black*) and CoChR Δ X-RSM (*blue*) with C-terminal truncations ranging from 0 to 21 amino acids. In contrast to ChroME Δ X-RSM/mTFP constructs, we did not observe a dependence of the 450 nm/490 nm photocurrent ratio on the linker length with. The average ratio for untagged CoChR ± s.e.m. is represented by the solid and dashed gray lines. *Bottom*: Peak photocurrent for CoChR Δ X-P2A-mScarlet (*black*) and CoChR Δ X-RSM (*blue*) in response to 100 ms pulses of 450 nm light at 0.1 mW/mm². The average photocurrent of untagged CoChR ± s.e.m. is represented by the solid

and dashed gray lines. CoChR Δ 21-P2A-mScarlet and all CoChR Δ X-RSM constructs have significantly lower photocurrent than untagged CoChR (* p < 0.05, ** p < 0.01, *** $p < 10^{-3}$, n.s.: not significant; two-sided Wilcoxon rank-sum test, $n \ge 6$ cells per variant). Error bars represent mean \pm s.e.m.

(c) *Top*: Normalized response of CoChR-P2A-mScarlet, CoChR Δ 0-RSM, and CoChR Δ 12-RSM in response to 500 ms pulses of 0.1 mW/mm² light at wavelengths ranging from 455 nm to 580 nm scaled for the excitation photon flux at each wavelength (*Methods*). We observed a statistically significant enhancement of 455 nm photocurrent's contribution toward the normalized response of CoChR Δ 0-RSM and CoChR Δ 12-RSM compared to CoChR-P2A-mScarlet (*p* < 0.01, two-sided Wilcoxon rank-sum test, *n* = 8 cells per construct). *Bottom*: Peak photocurrent scaled for excitation photon flux at each wavelength (*Methods*) for CoChR-P2A-mScarlet, CoChR Δ 0-RSM, and CoChR Δ 12-RSM. As in (b), CoChR Δ 0-RSM and CoChR Δ 12-RSM had significantly lower peak photocurrent than CoChR-P2A-mScarlet (*p* < 10⁻³ at all wavelengths, two-sided Wilcoxon rank-sum test, *n* = 8 cells per construct). Error bars represent mean ± s.e.m.

Supplemental Figure 6. ChroME's broad spectrum led to significant peak photocurrent reduction under yellow light excitation.

(a) Average photocurrent dynamics in HEK293T cells expressing ChroME Δ 15-mTFP in response to 5 ms pulses of 450 nm light at 1.6 mW/mm² (n = 6 cells). Shaded area represents mean ± s.d. (b) Average photocurrent dynamics in HEK293T cells expressing ChroME Δ 15-mTFP in response to 5 ms pulses of 585 nm light at 0.5 mW/mm².

(c) Average photocurrent dynamics in HEK293T cells expressing ChroME Δ 15-mTFP in response to 5 ms pulses of 1.6 mW/mm², 450 nm light delivered during constant 0.5 mW/mm², 585 nm illumination. The peak photocurrent amplitude was significantly dampened compared to peak photocurrent elicited by blue light pulses alone in panel (a) ($p = 2 \times 10^{-3}$, two-sided Wilcoxon rank-sum test, n = 6 cells).

Supplemental Figure 7. Pulsed yellow imaging light did not reduce photocurrent crosstalk or improve peak photocurrent at frequencies at or above video rate.

(a) Photocurrent in response to a 5 ms, 1.5 mW/mm², 450 nm pulse (blue dash) in a HEK293T cell expressing ChroME Δ 15-mTFP under a variety of pulsed and non-pulsed 585 nm imaging conditions with the same average power per 30 Hz "frame" (orange dashes). From left to right, the imaging LED conditions are: 1) no 585 nm imaging LED, 2) 0.5 mW/mm² constant 585 nm illumination, 3) 3.5 mW/mm², 585 nm pulses at 30 Hz with a duty cycle of 14.3%, 4) 3.5 mW/mm², 585 nm pulses at 90 Hz with a duty cycle of 14.3%, 5) 2.0 mW/mm², 585 nm pulses at 90 Hz with a duty cycle of 25%, and 6) 2.0 mW/mm², 585 nm pulses at 1500 Hz with a duty cycle of 25%. (b) Same as in (a) but showing the average for 8 cells. Note that the average offset in the baseline photocurrent is approximately equal for each imaging LED pulse condition. Shaded regions represent mean ± s.d.

Supplemental Table 1: Genetic sequences for ChroME-mTFP constructs

Nucleotide and amino acid sequences of parental ChroME and the developed constructs, including start and stop codons, are below:

ChroME

atggaaacag ccgccacaat gacccacgcc tttatctcag ccgtgcctag cgccgaagcc acaattagag gcctgctgag cgccgcagca gtggtgacac cagcagcaga cgctcacgga gaaacctcta acgccacaac agccggagcc gatcacggtt gcttccccca catcaaccac ggaaccgagc tgcagcacaa gatcgcagtg ggactccagt ggttcaccgt gatcgtggct atcgtgcagc tcatcttcta cggttggcac agcttcaagg ccacaaccgg ctgggaggag gtctacgtct gcgtgatcga gctcgtcaag tgcttcatcg agctgttcca cgaggtcgac agcccagcca cagtgtacca gaccaacgga ggagccgtga tttggctgcg gtacagcgaa tggctcctga cttgccccgt gatcctgatc cacctgagca acctgaccgg actgcacgaa gagtacagca agcggaccat gaccatcctg gtgaccgaca tcggcaacat cgtgtggggg atcacagccg cctttacaaa gggccccctg aagateetgt tetteatgat eggeetgtte taeggegtga ettgettett eeagategee aaggtgtata tcgagagcta ccacacctg cccaaaggcg tctgccggaa gatttgcaag atcatggcct acgtettett etgetettgg etgatgttee eegtgatgtt eategeegga eaegagggae tgggeetgat cacaccttac accageggaa teggecaect gateetggat etgateagea agaacaettg gggetteetg ggccaccacc tgagagtgaa gatccacgag cacatcctga tccacggcga catccggaag acaaccacca tcaacgtggc cggcgagaac atggagatcg agaccttcgt cgacgaggag gaggagggag gagtggcggc accggtagta gca METAATMTHA FISAVPSAEA TIRGLLSAAA VVTPAADAHG ETSNATTAGA DHGCFPHINH GTELQHKIAV GLQWFTVIVA IVQLIFYGWH SFKATTGWEE VYVCVIELVK CFIELFHEVD SPATVYQTNG GAVIWLRYSE WLLTCPVILI HLSNLTGLHE EYSKRTMTIL VTDIGNIVWG ITAAFTKGPL KILFFMIGLF YGVTCFFQIA KVYIESYHTL PKGVCRKICK IMAYVFFCSW LMFPVMFIAG HEGLGLITPY TSGIGHLILD LISKNTWGFL GHHLRVKIHE HILIHGDIRK TTTINVAGEN MEIETFVDEE EEGGVAAPVV A

ChroME∆15-mTFP

atggaaacag ccgccacaat gacccacgcc tttatctcag ccgtgcctag cgccgaagcc acaattagag gcctgctgag cgccgcagca gtggtgacac cagcagcaga cgctcacgga gaaacctcta acgccacaac agcoggagee gateacggtt getteeceea cateaaceae ggaacegage tgeageacaa gategeagtg ggactccagt ggttcaccgt gatcgtggct atcgtgcagc tcatcttcta cggttggcac agcttcaagg ccacaaccgg ctgggaggag gtctacgtct gcgtgatcga gctcgtcaag tgcttcatcg agctgttcca cgaggtcgac agcccagcca cagtgtacca gaccaacgga ggagccgtga tttggctgcg gtacagcgaa tggctcctga cttgccccgt gatcctgatc cacctgagca acctgaccgg actgcacgaa gagtacagca agcggaccat gaccatcctg gtgaccgaca tcggcaacat cgtgtggggg atcacagccg cctttacaaa gggccccctg aagateetgt tetteatgat eggeetgtte taeggegtga ettgettett eeagategee aaggtgtata tcgagagcta ccacacctg cccaaaggcg tctgccggaa gatttgcaag atcatggcct acgtettett etgetettgg etgatgttee eegtgatgtt eategeegga eaegagggae tgggeetgat cacacettac accageggaa teggecacet gateetggat etgateagea agaacaettg gggetteetg ggccaccacc tgagagtgaa gatccacgag cacatcctga tccacggcga catccggaag acaaccacca tcaacqtqqc cqqcqaqaac atqqaqatcq aqaccttcat qqtqaqcaaq qqcqaqqaqa ccacaatqqq cgtaatcaag cccgacatga agatcaagct gaagatggag ggcaacgtga atggccacgc cttcgtgatc gagggcgagg gcgagggcaa gccctacgac ggcaccaaca ccatcaacct ggaggtgaag gagggagccc ccctqccctt ctcctacqac attctqacca ccqcqttcqc ctacqqcaac aqqqccttca ccaaqtaccc cgacgacatc cccaactact tcaagcagtc cttccccgag ggctactctt gggagcgcac catgaccttc gaggacaagg gcatcgtgaa ggtgaagtcc gacatctcca tggaggagga ctccttcatc tacgagatac acctcaaggg cgagaacttc ccccccaacg gccccgtgat gcagaagaag accaccggct gggacgcctc caccgagagg atgtacgtgc gcgacggcgt gctgaagggc gacgtcaagc acaagctgct gctggagggc ggcggccacc accgcgttga cttcaagacc atctacaggg ccaagaaggc ggtgaagctg cccgactatc actttgtgga ccaccgcatc gagatcctga accacgacaa ggactacaac aaggtgaccg tttacgagag cgccgtggcc cgcaactcca ccgacggcat ggacgagctg tacaagtaa

METAATMTHA FISAVPSAEA TIRGLLSAAA VVTPAADAHG ETSNATTAGA DHGCFPHINH GTELQHKIAV GLQWFTVIVA IVQLIFYGWH SFKATTGWEE VYVCVIELVK CFIELFHEVD SPATVYQTNG GAVIWLRYSE WLLTCPVILI HLSNLTGLHE EYSKRTMTIL VTDIGNIVWG ITAAFTKGPL KILFFMIGLF YGVTCFFQIA KVYIESYHTL PKGVCRKICK IMAYVFFCSW LMFPVMFIAG HEGLGLITPY TSGIGHLILD LISKNTWGFL GHHLRVKIHE HILIHGDIRK TTTINVAGEN MEIETFMVSK GEETTMGVIK PDMKIKLKME GNVNGHAFVI EGEGEGKPYD GTNTINLEVK EGAPLPFSYD ILTTAFAYGN RAFTKYPDDI PNYFKQSFPE GYSWERTMTF EDKGIVKVKS DISMEEDSFI YEIHLKGENF PPNGPVMQKK TTGWDASTER MYVRDGVLKG DVKHKLLLEG GGHHRVDFKT IYRAKKAVKL PDYHFVDHRI EILNHDKDYN KVTVYESAVA RNSTDGMDEL YK*

ChroMEΔ15-Δ9mTFP

•••••						
atggaaacag	ccgccacaat	gacccacgcc	tttatctcag	ccgtgcctag	cgccgaagcc	acaattagag
gcctgctgag	cgccgcagca	gtggtgacac	cagcagcaga	cgctcacgga	gaaacctcta	acgccacaac
agccggagcc	gatcacggtt	gcttccccca	catcaaccac	ggaaccgagc	tgcagcacaa	gatcgcagtg
ggactccagt	ggttcaccgt	gatcgtggct	atcgtgcagc	tcatcttcta	cggttggcac	agcttcaagg
ccacaaccgg	ctgggaggag	gtctacgtct	gcgtgatcga	gctcgtcaag	tgcttcatcg	agctgttcca
cgaggtcgac	agcccagcca	cagtgtacca	gaccaacgga	ggagccgtga	tttggctgcg	gtacagcgaa
tggctcctga	cttgccccgt	gatcctgatc	cacctgagca	acctgaccgg	actgcacgaa	gagtacagca
agcggaccat	gaccatcctg	gtgaccgaca	tcggcaacat	cgtgtggggg	atcacagccg	cctttacaaa
gggccccctg	aagatcctgt	tcttcatgat	cggcctgttc	tacggcgtga	cttgcttctt	ccagatcgcc
aaggtgtata	tcgagagcta	ccacaccctg	cccaaaggcg	tctgccggaa	gatttgcaag	atcatggcct
acgtcttctt	ctgctcttgg	ctgatgttcc	ccgtgatgtt	catcgccgga	cacgagggac	tgggcctgat
cacaccttac	accagcggaa	tcggccacct	gatcctggat	ctgatcagca	agaacacttg	gggcttcctg
ggccaccacc	tgagagtgaa	gatccacgag	cacatcctga	tccacggcga	catccggaag	acaaccacca
tcaacgtggc	cggcgagaac	atggagatcg	agaccttcat	gggcgtaatc	aagcccgaca	tgaagatcaa
gctgaagatg	gagggcaacg	tgaatggcca	cgccttcgtg	atcgagggcg	agggcgaggg	caagccctac
gacggcacca	acaccatcaa	cctggaggtg	aaggagggag	ccccctgcc	cttctcctac	gacattctga
ccaccgcgtt	cgcctacggc	aacagggcct	tcaccaagta	ccccgacgac	atccccaact	acttcaagca
gtccttcccc	gagggctact	cttgggagcg	caccatgacc	ttcgaggaca	agggcatcgt	gaaggtgaag
tccgacatct	ccatggagga	ggactccttc	atctacgaga	tacacctcaa	gggcgagaac	ttcccccca
acggccccgt	gatgcagaag	aagaccaccg	gctgggacgc	ctccaccgag	aggatgtacg	tgcgcgacgg
cgtgctgaag	ggcgacgtca	agcacaagct	gctgctggag	ggcggcggcc	accaccgcgt	tgacttcaag
accatctaca	gggccaagaa	ggcggtgaag	ctgcccgact	atcactttgt	ggaccaccgc	atcgagatcc
tgaaccacga	caaggactac	aacaaggtga	ccgtttacga	gagcgccgtg	gcccgcaact	ccaccgacgg
catggacgag	ctgtacaagt	aa				
METAATMTHA	FISAVPSAEA	TIRGLLSAAA	VVTPAADAHG	ETSNATTAGA	DHGCFPHINH	GTELQHKIAV
GLQWFTVIVA	IVQLIFYGWH	SFKATTGWEE	VYVCVIELVK	CFIELFHEVD	SPATVYQTNG	GAVIWLRYSE
WLLTCPVILI	HLSNLTGLHE	EYSKRTMTIL	VTDIGNIVWG	ITAAFTKGPL	KILFFMIGLF	YGVTCFFQIA
KVYIESYHTL	PKGVCRKICK	IMAYVFFCSW	LMFPVMFIAG	HEGLGLITPY	TSGIGHLILD	LISKNTWGFL
GHHLRVKIHE	HILIHGDIRK	TTTINVAGEN	MEIETFMGVI	KPDMKIKLKM	EGNVNGHAFV	IEGEGEGKPY
DGTNTINLEV	KEGAPLPFSY	DILTTAFAYG	NRAFTKYPDD	IPNYFKQSFP	EGYSWERTMT	FEDKGIVKVK
SDISMEEDSF	IYEIHLKGEN	FPPNGPVMQK	KTTGWDASTE	RMYVRDGVLK	GDVKHKLLLE	GGGHHRVDFK
TIYRAKKAVK	LPDYHFVDHR	IEILNHDKDY	NKVTVYESAV	ARNSTDGMDE	LYK *	